Basics of NumPy Arrays
import numpy as np
# from list to array
list = [1,2,3,4]
arr = np.array(list)
arr
OUTPUT:
array([1, 2, 3, 4])
create numpy array with tuple
x = ("red","yellow","blue")
colors = np.array(x)
colors
OUTPUT:
array(['red', 'yellow', 'blue'], dtype='<U6')
create numpy array directly
x = np.array([1,2,3,4])
x
OUTPUT:
array([1, 2, 3, 4])
Type of ndarray
type(x)
OUTPUT:
numpy.ndarray
We can change the data type of the elements using dtype
np_heights = np.array([74, 75, 72, 72, 71])
np_heights.dtype
OUTPUT:
dtype('int32')
Change the data type to float
l_heights= (74, 75, 72, 72, 71)
np_heights = np.array(l_heights,dtype='float')
np_heights
OUTPUT:
array([74., 75., 72., 72., 71.])
np_heights.dtype
OUTPUT:
dtype('<U2')
Change the data type to strings
l_heights=(74, 75, 72, 72, 71)
np_heights = np.array(l_heights,dtype='str')
np_heights
OUTPUT:
array(['74', '75', '72', '72', '71'], dtype='<U2')
Notice that if you give different data types , it will convert it to string
import numpy as np
l_heights=(74.6, 75, "72", 72, 71)
np_heights = np.array(l_heights)
np_heights
OUTPUT:
array(['74.6', '75', '72', '72', '71'], dtype='<U32')
Multiple height (NumPy array) with a scalar.
np_heights = np.array([74, 75, 72, 72, 71])
np_heights + 20
OUTPUT:
array([94, 95, 92, 92, 91])
The following ways are commonly used when you know the size of the array beforehand:
np.ones(): Create array of 1s
np.zeros(): Create array of 0s
Creating a 1 D array of ones
[1,2,3,4,5,6,7,8]
[1,2,3
4,5,6
7,8,9]
arr = np.ones(10)
arr
OUTPUT:
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])
arr.shape ## 1 D array with 9 elements
OUTPUT:
(10,)
Notice that by default it creates float data type we can provide dtype explicitly using dtype
arr = np.ones(15,dtype='int')
arr
OUTPUT:
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
arr.dtype
OUTPUT:
dtype('int32')
Creating a 5 x 3 array of ones
arr1 = np.ones((5,3))
arr1
OUTPUT:
array([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]])
arr1.shape
OUTPUT:
(5,3)
np.zeros((5,6),dtype='float')
OUTPUT:
array([[0., 0., 0., 0., 0., 0.],
[0., 0., 0.,0., 0., 0.],
[0., 0., 0.,0., 0., 0.],
[0., 0., 0.,0., 0., 0.],
[0., 0., 0.,0., 0., 0.]])
Creating array of zeros
arr1 = np.zeros(5,dtype='int')
OUTPUT:
array([0, 0, 0, 0, 0])
NumPy arange() is one of the array creation routines based on numerical ranges, it takes 3 arguments ,start, stop and step
arr=np.arange(2,20,3)
arr
OUTPUT:
array([ 2, 5, 8, 11, 14, 17])
np.arange(5.0,dtype='int')
OUTPUT:
array([0, 1, 2, 3, 4])
np.arange(15,1,-2)
OUTPUT:
array([15, 13, 11, 9, 7, 5, 3])
Creating numpy array using linspace, it returns number spaces evenly w.r.t interval.
arr=np.linspace(4,100,20)
arr
OUTPUT:
array([ 4. , 9.05263158, 14.10526316, 19.15789474,
24.21052632, 29.26315789, 34.31578947, 39.36842105,
44.42105263, 49.47368421, 54.52631579, 59.57894737,
64.63157895, 69.68421053, 74.73684211, 79.78947368,
84.84210526, 89.89473684, 94.94736842, 100. ])
NumPy comes with its own set of methods and operations
Let's define two lists and perform '+' operation on that.
list_1 = [1,2,3]
list_2 = [4,5,6]
list_1 + list_2
OUTPUT:
[1, 2, 3, 4, 5, 6]
Let's define two NumPy array and perform '+' operation on that.
np1 = np.array([1,2,3])
np2 = np.array([4,5,6])
np1 + np2
OUTPUT:
array([5, 7, 9])
Lesson Assignment
Challenge yourself with our lab assignment and put your skills to test.
# Python Program to find the area of triangle
a = 5
b = 6
c = 7
# Uncomment below to take inputs from the user
# a = float(input('Enter first side: '))
# b = float(input('Enter second side: '))
# c = float(input('Enter third side: '))
# calculate the semi-perimeter
s = (a + b + c) / 2
# calculate the area
area = (s*(s-a)*(s-b)*(s-c)) ** 0.5
print('The area of the triangle is %0.2f' %area)
Sign up to get access to our code lab and run this code.
Try Now for Free