Basics of NumPy Arrays: Learn the Essentials

20 Videos
No Coding Experience Required
45 Assignments
Self Paced
An abstract design featuring smooth curves and geometric shapes, creating a minimalist aesthetic.

Sign Up For Free

Join now for expert-led courses, hands-on exercises, and a supportive learning community!
import numpy as np
# from list to array

list = [1,2,3,4]

arr = np.array(list)
arr

OUTPUT:

array([1, 2, 3, 4])

create numpy array with tuple

x = ("red","yellow","blue")
colors = np.array(x)
colors

OUTPUT:

array(['red', 'yellow', 'blue'], dtype='<U6')

create numpy array directly

x = np.array([1,2,3,4])
x

OUTPUT:

array([1, 2, 3, 4])

Type of ndarray

type(x)

OUTPUT:

numpy.ndarray

We can change the data type of the elements using dtype

np_heights = np.array([74, 75, 72, 72, 71])

np_heights.dtype

OUTPUT:

dtype('int32')

Change the data type to float

l_heights= (74, 75, 72, 72, 71)

np_heights = np.array(l_heights,dtype='float')

np_heights

OUTPUT:

array([74., 75., 72., 72., 71.])
np_heights.dtype

OUTPUT:

dtype('<U2')

Change the data type to strings

l_heights=(74, 75, 72, 72, 71)

np_heights = np.array(l_heights,dtype='str')

np_heights

OUTPUT:

array(['74', '75', '72', '72', '71'], dtype='<U2')

Notice that if you give different data types , it will convert it to string

import numpy as np
l_heights=(74.6, 75, "72", 72, 71)

np_heights = np.array(l_heights)

np_heights

OUTPUT:

array(['74.6', '75', '72', '72', '71'], dtype='<U32')

Multiple height (NumPy array) with a scalar.

np_heights = np.array([74, 75, 72, 72, 71])

np_heights + 20

OUTPUT:

array([94, 95, 92, 92, 91])

The following ways are commonly used when you know the size of the array beforehand:

np.ones(): Create array of 1s
np.zeros(): Create array of 0s

Creating a 1 D array of ones

[1,2,3,4,5,6,7,8]

[1,2,3
4,5,6
7,8,9]

arr = np.ones(10)
arr

OUTPUT:

array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])
arr.shape ## 1 D array with 9 elements

OUTPUT:

(10,)

Notice that by default it creates float data type we can provide dtype explicitly using dtype

arr = np.ones(15,dtype='int')
arr

OUTPUT:

array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
arr.dtype

OUTPUT:

dtype('int32')

Creating a 5 x 3 array of ones

arr1 = np.ones((5,3))
arr1

OUTPUT:

array([[1., 1., 1.],
      [1., 1., 1.],
      [1., 1., 1.],
      [1., 1., 1.],
      [1., 1., 1.]])

arr1.shape

OUTPUT:

(5,3)
np.zeros((5,6),dtype='float')

OUTPUT:

array([[0., 0., 0., 0., 0., 0.],
      [0., 0., 0.,0., 0., 0.],
      [0., 0., 0.,0., 0., 0.],
      [0., 0., 0.,0., 0., 0.],
      [0., 0., 0.,0., 0., 0.]])

 

Creating array of zeros

arr1 = np.zeros(5,dtype='int')

OUTPUT:

array([0, 0, 0, 0, 0])

NumPy arange() is one of the array creation routines based on numerical ranges, it takes 3 arguments ,start, stop and step

arr=np.arange(2,20,3)
arr

OUTPUT:

array([ 2,  5,  8, 11, 14, 17])
np.arange(5.0,dtype='int')

OUTPUT:

array([0, 1, 2, 3, 4])
np.arange(15,1,-2)

OUTPUT:

array([15, 13, 11,  9,  7,  5,  3])

Creating numpy array using linspace, it returns number spaces evenly w.r.t interval.

arr=np.linspace(4,100,20)
arr

OUTPUT:

array([  4.        ,  9.05263158,  14.10526316,  19.15789474,
      24.21052632,  29.26315789,  34.31578947, 39.36842105,
      44.42105263,  49.47368421,  54.52631579, 59.57894737,
       64.63157895,  69.68421053, 74.73684211,  79.78947368,
      84.84210526,  89.89473684,  94.94736842, 100.        ])


NumPy comes with its own set of methods and operations

Let's define two lists and perform '+' operation on that.

list_1 = [1,2,3]
list_2 = [4,5,6]

list_1 + list_2

OUTPUT:

[1, 2, 3, 4, 5, 6]

Let's define two NumPy array and perform '+' operation on that.

np1 = np.array([1,2,3])
np2 = np.array([4,5,6])

np1 + np2

OUTPUT:

array([5, 7, 9])
Lesson Assignment
Challenge yourself with our lab assignment and put your skills to test.
# Python Program to find the area of triangle

a = 5
b = 6
c = 7

# Uncomment below to take inputs from the user
# a = float(input('Enter first side: '))
# b = float(input('Enter second side: '))
# c = float(input('Enter third side: '))

# calculate the semi-perimeter
s = (a + b + c) / 2

# calculate the area
area = (s*(s-a)*(s-b)*(s-c)) ** 0.5
print('The area of the triangle is %0.2f' %area)
Sign up to get access to our code lab and run this code.
AI icon

AI Assistant For Help

Enhance your learning experience with our AI Learning Assistant. This sophisticated tool seamlessly evaluates your progress, course materials, and code, providing customized feedback and suggestions on the spot.
development icon

Flexible Mobile Coding

Engage with your coding tasks anytime, anywhere. Our adaptable, mobile optimized IDE lets you execute programming tasks directly from any web enabled device.
web
search icon

Project Development Support

Navigate through project challenges effortlessly with AI- powered support and swift access to a resource- rich community network.
file sharing icon

On-Demand Documentation

Quickly access integrated, context-specific documentation directly within the learning platform, streamlining your study process without the need to switch applications.
An abstract design featuring smooth curves and geometric shapes, creating a minimalist aesthetic.

Ready to become a Data Scientist that industry loves to hire? Apply Now. 

Explore Courses