NumPy Array Functions: Transform Your Data

Trigonometric functions
20 Videos
No Coding Experience Required
45 Assignments
Self Paced
Orange Eclipse

Sign Up For Free

Join now for expert-led courses, hands-on exercises, and a supportive learning community!

Trignometric functions

import numpy as np

np.sin(45)

OUTPUT:

0.8509035245341184
arr= np.array([0,45,90])

np.sin(arr)

OUTPUT:

array([0.        , 0.85090352, 0.89399666])
np.cos(arr)

OUTPUT:

array([ 1.        ,  0.52532199, -0.44807362])
np.tan(arr)

np.pi

OUTPUT:

3.141592653589793

Exponential and logarithmic functions

x = np.array([1, 2, 3, 4])
x

OUTPUT:

array([1, 2, 3, 4])

np.exp(x)   
# e=2.718...

OUTPUT:

array([2.71828183e+00, 7.38905610e+00, 2.00855369e+01, 2.20264658e+04])
###     2^1, 2^2, 2^3, 2^4
np.exp2(x)

OUTPUT:

array([ 2.,  4.,  8., 16.])

The logarithmic function is an inverse function to exponentiation.

log 5 to base 10

np.log10(5)

OUTPUT:

0.6989700043360189

log 2 with base 2

np.log2(2)

OUTPUT:

1.0

log of 3 with base 10

np.log10(3)

OUTPUT:

0.47712125471966244

Aggregates

x = np.arange(1,100)
x

OUTPUT:

array([ 1,  2,  3, 4,  5,  6, 7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17,
      18, 19, 20, 21,22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
      35, 36, 37, 38,39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
      52, 53, 54, 55,56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,
      69, 70, 71, 72,73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
      86, 87, 88, 89,90, 91, 92, 93, 94, 95, 96, 97, 98, 99])


np.sum(x)

OUTPUT:

4950

Accumulate stores the intermediate results in an array and returns that.

x = np.arange(1,6)

print("Array is:",x)

print("Accumlate add function:",np.add.accumulate(x))

OUTPUT:

Array is: [1 2 3 4 5]Accumlate add function: [ 1  3  6 10 15]
x = np.arange(1,6)
print("Array is:",x)

print("Accumlate multiply function:",np.multiply.accumulate(x))

OUTPUT:

Array is: [1 2 3 4 5]
Accumlate multiply function: [  1  2   6  24 120]

import numpy as np
a=np.array([[1,7],[2,4]])


b=np.array([[3,3],[5,2]])
print(a)

print(b)

OUTPUT:

[[1 7]
[2 4]]
[[3 3]
[5 2]]

b.shape

OUTPUT:

(2,2)

print(np.matmul(a,b))

OUTPUT:

[[38 17]
[26 14]]

print(np.dot(a,b))
[[38 17]
[26 14]]


The numpy.matmul function performs matrix multiplication. It is similar to numpy.dot for 2-D arrays, but there are differences in behavior for other dimensional arrays:
For 2-D arrays, numpy.matmul and numpy.dot perform the same matrix multiplication operation.
For 1-D arrays, the results are different

vector_a = np.array([2, 3, 4])

vector_b = np.array([1, 5, 6])

np.dot(vector_a, vector_b)

41

vector_a.shape

(3,)

vector_b.shape

(3,)

np.dot(vector_a, vector_b)

41

np.matmul(vector_a, vector_b)

41

matrix_b

OUTPUT:

array([[ 7,  8],
      [ 9, 10],
      [11, 12]])


matrix_a

OUTPUT:

array([[1, 2, 3],
      [4, 5, 6]])

np.dot(matrix_a, matrix_b)

OUTPUT:

array([[ 58,  64],
      [139, 154]])


matrix_a = np.array([[1, 2, 3], [4, 5, 6]])

matrix_b = np.array([[7, 8], [9, 10], [11, 12]])

np.matmul(matrix_a, matrix_b)

OUTPUT:

array([[ 58,  64],
      [139, 154]])

a=np.array([1,1,3,1])
b=np.array([1,2,1,1])
a * b

OUTPUT:

array([1, 2, 3, 1])
Matrix A raised to power 3
a=np.array([[2,0],[0,2]])
a

OUTPUT:

array([[2, 0],
      [0, 2]])

np.linalg.matrix_power(a,3) # matrix multiplication A A

OUTPUT:

array([[8, 0],
      [0, 8]])

Lesson Assignment
Challenge yourself with our lab assignment and put your skills to test.
# Python Program to find the area of triangle

a = 5
b = 6
c = 7

# Uncomment below to take inputs from the user
# a = float(input('Enter first side: '))
# b = float(input('Enter second side: '))
# c = float(input('Enter third side: '))

# calculate the semi-perimeter
s = (a + b + c) / 2

# calculate the area
area = (s*(s-a)*(s-b)*(s-c)) ** 0.5
print('The area of the triangle is %0.2f' %area)
Sign up to get access to our code lab and run this code.
AI icon

AI Assistant For Help

Enhance your learning experience with our AI Learning Assistant. This sophisticated tool seamlessly evaluates your progress, course materials, and code, providing customized feedback and suggestions on the spot.
development icon

Flexible Mobile Coding

Engage with your coding tasks anytime, anywhere. Our adaptable, mobile optimized IDE lets you execute programming tasks directly from any web enabled device.
web
search icon

Project Development Support

Navigate through project challenges effortlessly with AI- powered support and swift access to a resource- rich community network.
file sharing icon

On-Demand Documentation

Quickly access integrated, context-specific documentation directly within the learning platform, streamlining your study process without the need to switch applications.

Ready to become a Data Scientist that industry loves to hire? Apply Now. 

Explore Courses