Trignometric functions
import numpy as np
np.sin(45)
OUTPUT:
0.8509035245341184
arr= np.array([0,45,90])
np.sin(arr)
OUTPUT:
array([0. , 0.85090352, 0.89399666])
np.cos(arr)
OUTPUT:
array([ 1. , 0.52532199, -0.44807362])
np.tan(arr)
np.pi
OUTPUT:
3.141592653589793
Exponential and logarithmic functions
x = np.array([1, 2, 3, 4])
x
OUTPUT:
array([1, 2, 3, 4])
np.exp(x)
# e=2.718...
OUTPUT:
array([2.71828183e+00, 7.38905610e+00, 2.00855369e+01, 2.20264658e+04])
### 2^1, 2^2, 2^3, 2^4
np.exp2(x)
OUTPUT:
array([ 2., 4., 8., 16.])
The logarithmic function is an inverse function to exponentiation.
log 5 to base 10
np.log10(5)
OUTPUT:
0.6989700043360189
log 2 with base 2
np.log2(2)
OUTPUT:
1.0
log of 3 with base 10
np.log10(3)
OUTPUT:
0.47712125471966244
Aggregates
x = np.arange(1,100)
x
OUTPUT:
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21,22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38,39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55,56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,
69, 70, 71, 72,73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
86, 87, 88, 89,90, 91, 92, 93, 94, 95, 96, 97, 98, 99])
np.sum(x)
OUTPUT:
4950
Accumulate stores the intermediate results in an array and returns that.
x = np.arange(1,6)
print("Array is:",x)
print("Accumlate add function:",np.add.accumulate(x))
OUTPUT:
Array is: [1 2 3 4 5]Accumlate add function: [ 1 3 6 10 15]
x = np.arange(1,6)
print("Array is:",x)
print("Accumlate multiply function:",np.multiply.accumulate(x))
OUTPUT:
Array is: [1 2 3 4 5]
Accumlate multiply function: [ 1 2 6 24 120]
import numpy as np
a=np.array([[1,7],[2,4]])
b=np.array([[3,3],[5,2]])
print(a)
print(b)
OUTPUT:
[[1 7]
[2 4]]
[[3 3]
[5 2]]
b.shape
OUTPUT:
(2,2)
print(np.matmul(a,b))
OUTPUT:
[[38 17]
[26 14]]
print(np.dot(a,b))
[[38 17]
[26 14]]
The numpy.matmul function performs matrix multiplication. It is similar to numpy.dot for 2-D arrays, but there are differences in behavior for other dimensional arrays:
For 2-D arrays, numpy.matmul and numpy.dot perform the same matrix multiplication operation.
For 1-D arrays, the results are different
vector_a = np.array([2, 3, 4])
vector_b = np.array([1, 5, 6])
np.dot(vector_a, vector_b)
41
vector_a.shape
(3,)
vector_b.shape
(3,)
np.dot(vector_a, vector_b)
41
np.matmul(vector_a, vector_b)
41
matrix_b
OUTPUT:
array([[ 7, 8],
[ 9, 10],
[11, 12]])
matrix_a
OUTPUT:
array([[1, 2, 3],
[4, 5, 6]])
np.dot(matrix_a, matrix_b)
OUTPUT:
array([[ 58, 64],
[139, 154]])
matrix_a = np.array([[1, 2, 3], [4, 5, 6]])
matrix_b = np.array([[7, 8], [9, 10], [11, 12]])
np.matmul(matrix_a, matrix_b)
OUTPUT:
array([[ 58, 64],
[139, 154]])
a=np.array([1,1,3,1])
b=np.array([1,2,1,1])
a * b
OUTPUT:
array([1, 2, 3, 1])
Matrix A raised to power 3
a=np.array([[2,0],[0,2]])
a
OUTPUT:
array([[2, 0],
[0, 2]])
np.linalg.matrix_power(a,3) # matrix multiplication A A
OUTPUT:
array([[8, 0],
[0, 8]])
Lesson Assignment
Challenge yourself with our lab assignment and put your skills to test.
# Python Program to find the area of triangle
a = 5
b = 6
c = 7
# Uncomment below to take inputs from the user
# a = float(input('Enter first side: '))
# b = float(input('Enter second side: '))
# c = float(input('Enter third side: '))
# calculate the semi-perimeter
s = (a + b + c) / 2
# calculate the area
area = (s*(s-a)*(s-b)*(s-c)) ** 0.5
print('The area of the triangle is %0.2f' %area)